ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Constellation considers advanced nuclear in Maryland
Constellation is considering adding 2,000 MW of nuclear energy at Calvert Cliffs, located on Chesapeake Bay near Lusby, Md., which would effectively double the site’s output, according to the company’s near- and long-term project proposals submitted to the Marland Public Service Commission this week.
H. Kislev, B. J. Micklich
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1878-1883
Inertial Confinement Fusion Reactor | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40035
Articles are hosted by Taylor and Francis Online.
A Light-Ion-Beam (LIB) driven ICF reactor design with pressurized boiling water inside the target chamber is proposed, and several advantages and disadvantages of this concept are examined. For initial chamber pressures in the range of 5.106 – 1.4 · 107 Pa a density reduction of 1:100 in the vapor (steam) is required for adequate LIB propagation. This is achieved through the use of two consecutive laser pulses. Calculations of the laser energy required, the time histories of the physical properties inside the channels, and the effects of various radial energy deposition profiles are discussed. The results show that the required density reduction can be obtained with an energy requirement of 5–20 kJ/m/channel. A solution to the problem of cryogenic pellet injection in the high-pressure reactor environment is also suggested.