ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Earle W. Owen, Daniel W. Shimer
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1801-1806
Power Conversion, Instrumentation, and Control | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40022
Articles are hosted by Taylor and Francis Online.
Superconducting magnet systems under construction and projected for the future contain magnets that are magnetically coupled and electrically connected with shared power supplies. A change in one power supply voltage affects all of the magnet currents. A current controller for these systems must be designed as a multivariable system. The paper describes a method, based on decoupling control, for the rational design of these systems. Dynamic decoupling is achieved by cross-feedback of the measured currents. A network of gains at the input decouples the system statically and eliminates the steady-state error. Errors are then due to component variations. The method has been applied to the magnet system of the MFTF-B, at the Lawrence Livermore National Laboratory.