ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Ahmed M. Hassanein
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1735-1741
Plasma Heating, Impurity Control, and Fueling | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40011
Articles are hosted by Taylor and Francis Online.
A comprehensive three-dimensional Monte Carlo computer code, Ion Transport in Materials and Compounds (ITMC), has been developed to study in detail the surface related phenomena that affect the amount of sputtered atoms and back-scattered ions and their angular and energy dependence. A number of important factors that can significantly affect the sputtering behavior of a surface can be studied in detail, such as having different surface properties and composition than the bulk and synergistic effects due to surface segregation of alloys. These factors can be important in determining the lifetime of fusion reactor first walls and limiters. The ITMC Code is based on Monte Carlo methods to track down the path and the damage produced by charged particles as they slow down in solid metal surfaces or compounds. The major advantages of the ITMC code are its flexibility and ability to use and compare all existing models for energy losses, all known interatomic potentials, and to use different materials and compounds with different surface and bulk composition to allow for dynamic surface composition changes. There is good agreement between the code and available experimental results without using adjusting parameters for the energy losses mechanisms. The ITMC Code is highly optimized, very fast to run and easy to use.