ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
S. A. Freije
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1722-1728
Plasma Heating, Impurity Control, and Fueling | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40009
Articles are hosted by Taylor and Francis Online.
Tandem mirror devices rely on a number of plasma heating systems to create and maintain potential and density profiles which axially confine the central cell and provide MHD stability. The Fusion Power Demonstrator (FPD) tandem mirror study was carried out in three stages, each facility was configured with a slightly different mission and set of contraints. Although the heating system requirements varied in the three stages, the potential peak and thermal barrier ECRH systems and the sloshing ion neutral beam system were common elements of the configurations. The heating systems' requirements, the design approach, and the systems' description are presented.