ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Constellation considers advanced nuclear in Maryland
Constellation is considering adding 2,000 MW of nuclear energy at Calvert Cliffs, located on Chesapeake Bay near Lusby, Md., which would effectively double the site’s output, according to the company’s near- and long-term project proposals submitted to the Marland Public Service Commission this week.
Harry J. Reilly, Douglas F. Holland
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1631-1636
Environment, Siting, and Safety | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39993
Articles are hosted by Taylor and Francis Online.
A preconceptual design study and safety analysis of the Tokamak Fusion Core Experiment (TFCX) was conducted in 1984 for the Department of Energy. This paper summarizes the calculations and comparisons related to TFCX siting and environmental issues such as radiological doses to the public living near the facility. Included are discussions of (a) routine and accidental releases of tritium, (b) routine releases of activated air, (c) direct radiation (including “skyshine”), and (d) seismic criteria. Other potential issues are also discussed including the amount of tritium that might be retained in the graphite armor in the torus, the possible severity of magnet accidents, and the extent of damage due to plasma disruptions. The conclusions drawn from these calculations should be applicable to some of the other planned ignited core experiments that have operating parameters similar to those of TFCX.