ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
H. Maekawa, K. Tsuda, Y. Ikeda, Y. Oyama, S. Yamaguchi, M. Nakagawa, T. Fukumoto, A. Hasegawa, T. Mori, Y. Seki, T. Nakamura
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1460-1465
Blanket Neutronic | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39972
Articles are hosted by Taylor and Francis Online.
Tritium production-rate (TPR) distributions were measured in a Li2O slab assembly using the FNS. The size of assembly was 31.5 cm in equivalent radius and 61.0 cm in thickness. Enriched 6Li and 7Li sintered pellets of Li2O were adopted to measure the TPRs of 6Li and 7Li, separately. After irradiated pellets were treated chemically, tritium produced in the pellets was measured by a liquid scintillation counting system. Measured TPR distributions have been analyzed by using the three transport codes, DOT3.5, MORSE-DD and BERMUDA-2DN with ENDF/B-4 and JENDL-3PR1 nuclear data files. The JENDL-3PR1 improves the accuracy of calculated TPR very well for both 6Li and 7Li.