ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
C. D. Henning, B. G. Logan, W. L. Barr, R. H. Bulmer, J. N. Doggett, B. M. Johnston, J. D. Lee, R. W. Hoard, D. S. Slack, J. R. Miller
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1351-1356
Next-Generation Device | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39956
Articles are hosted by Taylor and Francis Online.
As part of a continuing effort by the Office of Fusion Energy to define an ignition experiment, a superconducting tokamak has been designed with thin neutron shielding and aggressive magnet and plasma parameters. By so minimizing the inner radial dimensions of the tokamak center post, coil, and shielding region, the plasma major radius is reduced with a corresponding reduction in device costs. The peak nuclear-heating rate in the superconducting TF coils is 22 mW/cm3, which results in a steady heat load to the cryogenic system of 50 kW. Fast-wave, lower-hybrid heating would be used to induce a 10-MA current in a moderate density plasma. Then pellet fueling would raise the density to achieve ignition as the current decays in a few hundred seconds. Steady-state current drive in subignited conditions permits a 0.8 MW/m2 average wall loading to study plasma and nuclear engineering effects.