ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
C. D. Henning, B. G. Logan, W. L. Barr, R. H. Bulmer, J. N. Doggett, B. M. Johnston, J. D. Lee, R. W. Hoard, D. S. Slack, J. R. Miller
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1351-1356
Next-Generation Device | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39956
Articles are hosted by Taylor and Francis Online.
As part of a continuing effort by the Office of Fusion Energy to define an ignition experiment, a superconducting tokamak has been designed with thin neutron shielding and aggressive magnet and plasma parameters. By so minimizing the inner radial dimensions of the tokamak center post, coil, and shielding region, the plasma major radius is reduced with a corresponding reduction in device costs. The peak nuclear-heating rate in the superconducting TF coils is 22 mW/cm3, which results in a steady heat load to the cryogenic system of 50 kW. Fast-wave, lower-hybrid heating would be used to induce a 10-MA current in a moderate density plasma. Then pellet fueling would raise the density to achieve ignition as the current decays in a few hundred seconds. Steady-state current drive in subignited conditions permits a 0.8 MW/m2 average wall loading to study plasma and nuclear engineering effects.