ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S. Locke Bogart, John A. Dalessandro (EASI), Peter Koert (IRT), Thomas J. Seed (LANL), Daniel L. Vrable (GAT), Carl E. Wagner (TRW), Carl F. Weggel (EASI)
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1339-1344
Next-Generation Device | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39954
Articles are hosted by Taylor and Francis Online.
The Demountable Tokamak Fusion Core (DTFC) concept is a water-cooled, normally conducting tokamak provided with joints in the toroidal field coil turns. These joints, located in the top and bottom horizontal members of each turn, permit the removal and replacement of the core of the tokamak (central OH coil, vacuum vessel, impurity control system, RF heating and current drive systems, inner blanket, and PF trimming coils). The rest of the tokamak (outer blanket, toroidal field current return coils, and main PF coils) remains in-place. This feature arises because the DTFC was conceived in recognition of the fact the core of the tokamak is directly exposed to fusion neutron and charged particle radiation and is the subsystem that will fail first. Provision for the replacement of the core in a straightforward way will significantly increase the availability of a DTFC facility for engineering and commercial applications.