ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Locke Bogart, John A. Dalessandro (EASI), Peter Koert (IRT), Thomas J. Seed (LANL), Daniel L. Vrable (GAT), Carl E. Wagner (TRW), Carl F. Weggel (EASI)
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1339-1344
Next-Generation Device | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39954
Articles are hosted by Taylor and Francis Online.
The Demountable Tokamak Fusion Core (DTFC) concept is a water-cooled, normally conducting tokamak provided with joints in the toroidal field coil turns. These joints, located in the top and bottom horizontal members of each turn, permit the removal and replacement of the core of the tokamak (central OH coil, vacuum vessel, impurity control system, RF heating and current drive systems, inner blanket, and PF trimming coils). The rest of the tokamak (outer blanket, toroidal field current return coils, and main PF coils) remains in-place. This feature arises because the DTFC was conceived in recognition of the fact the core of the tokamak is directly exposed to fusion neutron and charged particle radiation and is the subsystem that will fail first. Provision for the replacement of the core in a straightforward way will significantly increase the availability of a DTFC facility for engineering and commercial applications.