ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
J. Weede, J. Vetrovec, H. Beck, J. Chiu, A. Goldner
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1247-1252
Impurity Control and Vacuum Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39938
Articles are hosted by Taylor and Francis Online.
An actively-cooled dump module design is being developed for use in the MFTF-B long pulse neutral beamlines. The modular approach allows for application of the same design inseveral different areas, such as positive ion dumps, neutral dumps and beamline apertures. The dump modules are required to dissipate up to 1.2 MW of beam power with peak heat fluxes as high as 1500 W/cm2 for a lifetime of 50,000 cycles. The modules are constructed from two rows of 1.91 cm O.D. × 0.318 cm wall (0.75 × 0.125 in.) oxygen-free copper tubing, staggered to achieve maximum optical density. The tubes are bent into a “C” shape and connected to large diameter manifolds at each end. Thermal analysis of conduction in the tube wall has been performed to predict inner wall heat flux and tube wall temperature profiles. The results have been used both as an input to critical heat flux assessment as well as an input to NASTRAN stress analysis. The NASTRAN analysis has shown that tube deflections will be within allowable limits and that the design life will be ≅ 100,000 cycles.