ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
J. Weede, J. Vetrovec, H. Beck, J. Chiu, A. Goldner
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1247-1252
Impurity Control and Vacuum Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39938
Articles are hosted by Taylor and Francis Online.
An actively-cooled dump module design is being developed for use in the MFTF-B long pulse neutral beamlines. The modular approach allows for application of the same design inseveral different areas, such as positive ion dumps, neutral dumps and beamline apertures. The dump modules are required to dissipate up to 1.2 MW of beam power with peak heat fluxes as high as 1500 W/cm2 for a lifetime of 50,000 cycles. The modules are constructed from two rows of 1.91 cm O.D. × 0.318 cm wall (0.75 × 0.125 in.) oxygen-free copper tubing, staggered to achieve maximum optical density. The tubes are bent into a “C” shape and connected to large diameter manifolds at each end. Thermal analysis of conduction in the tube wall has been performed to predict inner wall heat flux and tube wall temperature profiles. The results have been used both as an input to critical heat flux assessment as well as an input to NASTRAN stress analysis. The NASTRAN analysis has shown that tube deflections will be within allowable limits and that the design life will be ≅ 100,000 cycles.