ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J. Vetrovec
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1235-1240
Impurity Control and Vacuum Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39936
Articles are hosted by Taylor and Francis Online.
The key parameter in calculating the pumping speed of cryopanels is the capture probability. This probability is usually determined by Monte Carlo methods simulating molecular transport of gas. While such methods can be very accurate, they are also rather costly and inflexible. An alternate approach is proposed which uses an analytical method that draws on analogy between radiative heat transfer and molecular gas flow. This analytical method will be described, and it will be shown how it was used to obtain first estimates of pumping speed for the cryopanels for the MFTF-B Neutral Beamlines. The directional dependence of pumping speed is discussed in detail. The results of the calculations are compared to both the Monte Carlo results and experimental data.