ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
D. J. Meeker, J. H. Hammer, C. W. Hartman
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1191-1197
Inertial Confinement Fusion Reactor Technology | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39929
Articles are hosted by Taylor and Francis Online.
We discuss the possibility of achieving energy, power and power density necessary for ICF by magnetically accelerating plasma confined by a compact torus (CT) field configuration. The CT, which consists of a dipole (poloidal) field and imbedded toroidal field formed by force-free, plasma current, is compressed and accelerated between coaxial electrodes by Bθ fields as in a coaxial rail-gun. Compression and acceleration over several meters by a 9.4 MJ capacitor bank is predicted to give a 5.7 cm radius, 0.001 gm CT 5 MJ kinetic energy (107 m/sec). Transport and focussing several meters by a disposable lithium pipe across the containment vessel is predicted to bring 4.8 MJ into the pellet region in 0.5 cm2 area in 0.3 ns. The high efficiency (∼ 50%) and high energy delivery of the CT accelerator could lead to low cost, few hundred MW power plants that are economically viable.