ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Harold Wiesmann
Fusion Science and Technology | Volume 17 | Number 2 | March 1990 | Pages 350-354
Cold Fusion Technical Note | Japanese Fusion Research: Activities in Fusion Nuclear Technology | doi.org/10.13182/FST90-A39903
Articles are hosted by Taylor and Francis Online.
A search for steady-state “excess” heat, neutron emission, or tritium production was carried out for palladium electrodes electrolytically charged with deuterium. No substantial deviation in cell temperatures was observed, and the upper limit to excess heat production was 320 m W/cm3 for the largest palladium cathode. No increase in neutron production above background levels was observed, and the sensitivity of the neutron detection system yielded an upper limit of 2.18 × 10−22 (3-σ) fusion/s·atom−1 pair. The tritium levels in the cells increased by 50%, but the cells were run in the open configuration and the tritium increases were consistent with electrolytic enrichment. An approximate upper limit for tritium production was 2 × 102 tritium /ml · C−1. The cell temperatures were recorded once daily and monitored intermittently, but no transient excess heat excursions were observed throughout the experiment.