ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Harold Wiesmann
Fusion Science and Technology | Volume 17 | Number 2 | March 1990 | Pages 350-354
Cold Fusion Technical Note | Japanese Fusion Research: Activities in Fusion Nuclear Technology | doi.org/10.13182/FST90-A39903
Articles are hosted by Taylor and Francis Online.
A search for steady-state “excess” heat, neutron emission, or tritium production was carried out for palladium electrodes electrolytically charged with deuterium. No substantial deviation in cell temperatures was observed, and the upper limit to excess heat production was 320 m W/cm3 for the largest palladium cathode. No increase in neutron production above background levels was observed, and the sensitivity of the neutron detection system yielded an upper limit of 2.18 × 10−22 (3-σ) fusion/s·atom−1 pair. The tritium levels in the cells increased by 50%, but the cells were run in the open configuration and the tritium increases were consistent with electrolytic enrichment. An approximate upper limit for tritium production was 2 × 102 tritium /ml · C−1. The cell temperatures were recorded once daily and monitored intermittently, but no transient excess heat excursions were observed throughout the experiment.