ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Anil Kumar, Yoichi Watanabe, Mahmoud Z. Youssef, Mohamed A. Abdou
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1309-1314
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39870
Articles are hosted by Taylor and Francis Online.
Phase IIC of the experimental program is to begin in fall of 1988. An extensive pre-analysis has been carried out to select the experimental configurations. The investigations were confined to looking at the effect of (i) multi-layer arrangement of Be multiplier, (ii) the presence of contiguous layers of structure and coolant, (iii) the introduction of protective graphite armor in front of the first wall, on tritium production rate (TPR) in a Li2O assembly. The basic materials and geometrical structure of the assembly, are derived from that of the Phase IIA. The structure is simulated by stainless steel (SS) and the coolant is either polyethylene (PE) or water. Generally, the heterogeneities strongly distort the local T6 and T7 distributions; their effect on global TPR is less marked. One of the two selected configurations has Be, in edge-on layered arrangement with Li2O, as multiplier. In the second configuration, three coolant channels (SS+PE) will be incorporated to simulate structural heterogeneity.