ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
M.Z. Youssef, Y. Watanabe, M. Abdou, M. Nakagawa, T. Mori, K. Kosako, T. Nakamura
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1299-1308
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39869
Articles are hosted by Taylor and Francis Online.
Several fusion-oriented integral experiments were performed in Phase II of the U.S./JAERI Collaborative Program on Fusion Neutronics where the geometrical configurations and source condition closely simulate the incident spectrum in fusion reactors. The main objective of the program is to estimate the uncertainties involved in predicting tritium breeding rate in Li2O and other neutronics parameters in fusion blankets that include engineering features (i.e., first wall, multiplier). In Phase II, the Li2O test assembly is placed on one end of a Li2CO3 enclosure that houses the D-T neutron source. Predicted local and integrated tritium production rates (TPR) from 6Li(T6), 7Li(T7) and natural lithium (TN) were compared to measurements in various configurations that included reference, first wall and beryllium multiplier experiments (Phase IIA) in addition to repeating these experiments with a FW/Be layer covering the interior surface of the Li2CO3 enclosure (Phase IIB). Other neutronics parameters that included source characterization by foil measurements, in-system reaction rates, and in-system spectrum measurements were also analyzed. The analyses were carried out independently by both parties using various 3-D Monte Carlo codes and 2-D discrete ordinates codes and data libraries. The results of the analyses are reported in this paper with emphasis placed on the impact of the beryllium data on the discrepancies found between predictions and measurements.