ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
M.Z. Youssef, Y. Watanabe, M. Abdou, M. Nakagawa, T. Mori, K. Kosako, T. Nakamura
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1299-1308
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39869
Articles are hosted by Taylor and Francis Online.
Several fusion-oriented integral experiments were performed in Phase II of the U.S./JAERI Collaborative Program on Fusion Neutronics where the geometrical configurations and source condition closely simulate the incident spectrum in fusion reactors. The main objective of the program is to estimate the uncertainties involved in predicting tritium breeding rate in Li2O and other neutronics parameters in fusion blankets that include engineering features (i.e., first wall, multiplier). In Phase II, the Li2O test assembly is placed on one end of a Li2CO3 enclosure that houses the D-T neutron source. Predicted local and integrated tritium production rates (TPR) from 6Li(T6), 7Li(T7) and natural lithium (TN) were compared to measurements in various configurations that included reference, first wall and beryllium multiplier experiments (Phase IIA) in addition to repeating these experiments with a FW/Be layer covering the interior surface of the Li2CO3 enclosure (Phase IIB). Other neutronics parameters that included source characterization by foil measurements, in-system reaction rates, and in-system spectrum measurements were also analyzed. The analyses were carried out independently by both parties using various 3-D Monte Carlo codes and 2-D discrete ordinates codes and data libraries. The results of the analyses are reported in this paper with emphasis placed on the impact of the beryllium data on the discrepancies found between predictions and measurements.