ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
H. Maekawa, S. Yamaguchi, Y. Oyama, K. Kosako
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1283-1286
Blanket Nucleonics Experiment | doi.org/10.13182/FST89-A39866
Articles are hosted by Taylor and Francis Online.
Tritium production-rate (TPR) distributions of 6Li, 7Li and NLi were measured in a Be-sandwich Li2O assembly. The Be-region of 50.8 mm-thick was sandwiched by 50.6 and 506 mm-thick Li2O regions. Tritium production rates along the central axis were measured by four techniques, i.e., liquid scintillation method with Li2O pellets, self-irradiation method with LiF TLDs, Li-glass scintillators and a small sphere NE213 detector. The TPRs measured by the four methods agreed well with each other within the experimental errors. The calculation was performed by DOT3.5 with the nuclear data files of JENDL-3T and ENDF/B-IV. An agreement is observed between the calculated and measured TPRs within the experimental errors except near the Be-region.