ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
G.L. Kulcinski, G.A. Emmert, J.P. Blanchard, L.A. El-Guebaly, H.Y. Khater, J.F. Santarius, M.E. Sawan, I.N. Sviatoslavsky, L.J. Wittenberg, R.J. Witt
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1233-1244
Commercial Reactors, Economics and Power Conversion | doi.org/10.13182/FST89-A39861
Articles are hosted by Taylor and Francis Online.
A preconceptual design of a tokamak reactor fueled by a D-He-3 plasma is presented, A low aspect ratio (A=2–4) device is studied here but high aspect ratio devices (A > 6) may also be quite attractive. The Apollo D-He-3 tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The overall efficiency ranges from 37 to 52% depending on whether the bremsstrahlung energy is utilized. The low neutron wall loading (0.1 MW/m2) allows a permanent first wall to be designed and the low nuclear decay heat enables the reactor to be classed as inherently safe. The cost of electricity from Apollo is > 40% lower than electricity from a similar sized DT reactor.