ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Ying, A. S. Lavine, M. Tillack
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1169-1173
Blanket Liquid Metal MHD | doi.org/10.13182/FST89-A39851
Articles are hosted by Taylor and Francis Online.
Analyses were performed of the effect of Hartmann layers and side layers on heat transfer in laminar MHD flow in ducts and the dependence on the magnitude of the Hartmann number. Analytical and numerical results are presented for both fully developed and thermally developing cases. The presence of side layers in a rectangular duct usually increases the heat transfer coefficient on the side layer walls and decreases the heat transfer coefficient on the other two walls. For ducts with uniform thickness and conductivity on all walls, the studies show that a duct with higher conductance ratio gives higher average Nusselt number on the side wall. However, this behavior depends on the combination of Hartmann number and the conductance ratio. The heat generation inside the duct enhances the heat transfer coefficient.