ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
A. Ying, A. S. Lavine, M. Tillack
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1169-1173
Blanket Liquid Metal MHD | doi.org/10.13182/FST89-A39851
Articles are hosted by Taylor and Francis Online.
Analyses were performed of the effect of Hartmann layers and side layers on heat transfer in laminar MHD flow in ducts and the dependence on the magnitude of the Hartmann number. Analytical and numerical results are presented for both fully developed and thermally developing cases. The presence of side layers in a rectangular duct usually increases the heat transfer coefficient on the side layer walls and decreases the heat transfer coefficient on the other two walls. For ducts with uniform thickness and conductivity on all walls, the studies show that a duct with higher conductance ratio gives higher average Nusselt number on the side wall. However, this behavior depends on the combination of Hartmann number and the conductance ratio. The heat generation inside the duct enhances the heat transfer coefficient.