ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. N. Kim, M. A. Abdou
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1163-1168
Blanket Liquid Metal MHD | doi.org/10.13182/FST89-A39850
Articles are hosted by Taylor and Francis Online.
A new numerical algorithm was developed to provide a fully detailed flow field in liquid metal MHD flow with a relatively large Hartmann number and interaction parameter. The algorithm includes the effects of advection and diffusion, and is capable of predicting momentum and heat transfer in MHD flows. Using this algorithm, an incompressible, viscous, three-dimensional MHD flow in a square duct is investigated at a low magnetic Reynolds number by means of the finite volume method. The velocity and temperature profiles are obtained in the developing region for constant wall temperature. The result shows that large velocities are obtained near the insulating walls parallel to the magnetic field. Also, near the perfectly conducting walls perpendicular to the field, a velocity profile like a Hartmann layer is obtained. In association with the velocity profiles, Nusselt number at the insulating walls (with side layer) is seen to be larger than that at the perfectly conducting walls (with Hartmann layer).