ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
W. Kernbichlerb, G. H. Miley, M. Heindler
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1142-1147
Alternate Fuels and Innovative Confinement Concept | doi.org/10.13182/FST89-A39847
Articles are hosted by Taylor and Francis Online.
The intrinsic potential of D-3He as a reactor fuel is investigated for a large range of 3He to D density ratios. A steady-state zero-dimensional reactor model is developed in which much care is attributed to a proper treatment of fast fusion products. Useful ranges of reactor parameters as well as temperature-density windows for driven and ignited operation are identified. Various figures of merit are calculated, such as power densities, net power production, neutron production, tritium load and radiative power. These results suggest several optimistic conclusions about the performance of D-3He as a reactor fuel. aSupported by Fonds zur Foerderung der wissenschaftlichen Forschung, Bundeswirtschaftskammer and Friedrich Schiedel-Stiftung, Austria, Internat. Atomic Energy Agency, Vienna, and US DOE contract No. DEFG02-86ER52127. bPermanent address: Alternate Energy Physics Program, Institute for Theoretical Physics, Graz University of Technology, Austria