ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bernard W. Riemer
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1051-1057
Magnet Engineering, Design and Experiments — II | doi.org/10.13182/FST89-A39831
Articles are hosted by Taylor and Francis Online.
A comparison of structural efficiency of the toroidal field (TF) coils between the Next European Torus (NET) and the Fusion Experimental Reactor (FER) machines was made. The effectiveness of their winding packs to help react loads incurred from in-plane and out-of-plane electromagnetic forces was estimated. Only analytic techniques, including mechanics of materials methods and composite mixture rules, were used. The results for NET compared well with the fairly detailed two-dimensional (2-D) and three-dimensional (3-D) finite element analysis (FEA) performed by the NET team. Similar FEAs of the Advanced Option C (ACS) version of FER have not been done, but the analytic results should be reasonable. The methodology used has been successfully programmed for use in reactor systems codes. Research sponsored by the Office of Fusion Energy, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Incorporated.