ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
M. D. Driga, K. T. Hsieh, W. F. Weldon, M. D. Werst
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 1039-1045
Magnet Engineering, Design and Experiments — II | doi.org/10.13182/FST89-A39829
Articles are hosted by Taylor and Francis Online.
In this paper, the electromechanical analysis of a scaled down prototype (1/10 scale in linear dimensions) of the IGNITEX toroidal field (TF) magnet is presented. The primary goal of the IGNITEX Technology Demonstrator (ITD) is to prove the operation of a single turn, 20 T, toroidal field coil powered by a homopolar generator power supply system of 60 MJ, 9 MA, currently operating at the Center for Electromechanics, The University of Texas at Austin (CEM-UT). In order to simulate the actual operating conditions of the full-scale device, the ITD coil will be precooled at liquid nitrogen temperature and driven by the six homopolar generators in parallel. Scaling relationships have shown that electromagnetic loading mechanical and thermal loading of the coil and their relative distribution will approximate well predicted levels of the full-scale IGNITEX device.