ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
M. Zimmermann, M.S. Kazimi, N.O. Siu, R.J. Thome
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 951-956
Magnet Engineering, Design and Experiments — I | doi.org/10.13182/FST89-A39816
Articles are hosted by Taylor and Francis Online.
Several fault scenarios for electrical failures in the Poloidal Field (PF) magnet system are investigated involving shorts and faults with constant applied voltage at the coil terminals. A simplified model of the Compact Ignition Tokamak (CIT) is used to examine the load conditions for the PF and the Toroidal Field (TF) coils resulting from these fault scenarios. It is concluded that shorts do not pose large risks for the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. However, the out-of-plane loads at the inner corner of the TF coils can increase substantially for a wide range of scenarios, and this effect can even be stronger depending on the terminal constraints on the internal PF coils.