ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
P.N. Haubenreich, S. Shimamoto, P. Komarek, G. Vécsey
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 909-914
Magnet Engineering, Design and Experiments — I | doi.org/10.13182/FST89-A39809
Articles are hosted by Taylor and Francis Online.
In the 10-year-long Large Coil Task, the U.S., EURATOM, Japan and Switzerland separately designed and jointly tested six superconducting toroidal field coils, having 2.5 × 3.5-m bores. Three coils were bath-cooled; three used forced flow. Five used NbTi conductors; one Nb3Sn. All were fully instrumented. All coils surpassed 8-T design criteria, reaching peak fields of 9.0 T. Tests demonstrated tolerances for internal heating and safety under abnormal conditions (e.g., loss of flow). Data were gained in experiments to extreme conditions. This paper summarizes results, both technical and with regard to successful international collaboration.