ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
H. Attaya, Y. Gohar, D. Smith, C. Baker
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 893-899
ITER Nuclear Design | doi.org/10.13182/FST89-A39807
Articles are hosted by Taylor and Francis Online.
Analyses have been made for different structural alloys proposed for the International Thermonuclear Experimental Reactor (ITER). Candidate alloys include austenitic steels stabilized with nickel (NiSS) or manganese (MnSS). The radioactivity, the decay heat, and the US waste disposal rating of each alloy have been calculated for the inboard shield of the ITER design option utilizing water cooled solid breeder blanket. The results show, for the .55 m thick inboard shield and after 3 MW.yr/m2 fluence, that the long term activation problems, e.g. radioactive waste, of the MnSS are much less than that of the NiSS. All the MnSS alloys considered are qualified as Class C or better low level waste. Most of the NiSS alloys are not qualified for near surface burial. However, the short term decay heat generation rate for the MnSS is much higher than that of the NiSS.