ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Mahmoud Z. Youssef, Insoo Jun
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 887-892
ITER Nuclear Design | doi.org/10.13182/FST89-A39806
Articles are hosted by Taylor and Francis Online.
In the initial design of TIBER-II inboard (I/B) shield, multilayers of tungsten shield and coolant were deployed with a total thickness of 48 cm. It was thought during the design process to replace W by PCA. The motivations are: (1) accumulated activation level in the I/B shield at shutdown is larger in the W-shield in comparison to the PCA-shield, and (2) concerns regarding cost/fabrication. This design change required an I/B shield thickness of ∼58 cm to reach the same performance level of the 48 cm W-shield. In this paper a detailed comparison between the two types of shield is given regarding the accumulated radioactivity, biological hazard potential (BHP), and afterheat levels at shutdown and various times thereafter. In addition, a substantial part of the present work is devoted to studying the impact of the present neutron cross-section uncertainties in the prediction of the radiation damage parameters in the S/C magnet. In this regard, an extensive cross-section sensitivity/uncertainty analysis was performed to assess the required increase in the I/B shield thickness in both cases to account for these uncertainties. It was shown that the economic penalty of such an increase is 13–17 M$ in the W-shield case as opposed to 10–14 M$ in the case of the PCA-shield.