ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Laila A. El-Guebaly, Mohamed E. Sawan
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 881-886
ITER Nuclear Design | doi.org/10.13182/FST89-A39805
Articles are hosted by Taylor and Francis Online.
The shield design of ITER is required to meet both magnet protection requirements and safety-related criteria. Although the W provides excellent magnet protection, its high specific decay heat caused some concern in case of an accident. A trade study was carried out in which W is replaced by steel in the high neutron flux zones of the inboard shield and the sensitivity of the machine size, cost, and magnet damage to such change was determined. Satisfying the 1019 n/cm2 fast fluence limit for the magnet, the direct cost is essentially the same for the steel and W shields, although the steel shield is 0.1 m thicker. The 0.55 m thick inboard shield of ITER is configured in 3 main layers: a 0.05 m Be layer, followed by a 0.18 m steel layer, then a 0.18 m W layer. Five coolant channels, each 0.01 m wide, are properly distributed across the shield. About 0.1 m thick layer of aqueous Li salt solution at the back of the shield was found necessary to minimize the damage in the magnet. This design meets the neutronics, safety, and thermal hydraulics requirements and there appears to be no feasible problems associated with it.