ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
A. Boschi, T. Palma, S. Sarto, G. Cambi, G. Zappellini, H. Djerassi, J. Rouillard
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 803-808
Safety and Environment — I | doi.org/10.13182/FST89-A39793
Articles are hosted by Taylor and Francis Online.
The safety analysis and risk assessment of a Tokamak Test Reactor is approached by an iterative, probabilistic, system study methodology, jointly devoloped by ENEAa and CEAb. The first part of this methodology consists of a safety related functional analysis of the plant. That is developed in a quite systematic and exhaustive way, aiming at the identification of all the process functions and their modes of loss, so as to forecast all the possible initiating events of safety relevant accident sequences, and their subsequent evolution. This aim is achieved making use of functional interaction and interface matrices, functional fault trees and event trees. The second part concerns the overall plant risk assessment. This is performed using PRA (Probabilistic Risk Assessment) concepts and methods to work out the probabilistic quantification of the system event trees (and linked fault trees), and the evaluation of the related consequences. The methodology is applied by iterations, following the different stages of the plant design development. The first iteration has been applied to the safety analysis of the “Vacuum”, “Tritium and Fuel Handling”, “Blanket” and “First Wall and Divertor” systems of a Tokamak Test Reactor, with a particular reference to NETc. aThe Italian National Committee for the Nuclear Energy and Alternative Energies. bCommissariat à l'Energie Atmoque, the French Natinal Commissariat for the Atomic Energy. cNext European Torus, IPP Garching, Germany F.R.