ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
David G. Nilson, John G. Woodworth
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 578-582
The ICF Laboratory Microfusion Facilty | doi.org/10.13182/FST89-A39760
Articles are hosted by Taylor and Francis Online.
Thegeometrical layout for the 68 beams of the 10 megajoule laser shows the final optics placed at 25 meters from the target (see Fig. 1). The final optic will be a 2–5 cm thick debris shield ($40K each) which will be placed in front of a $200K focussing lens. Each of the 68 beams will deliver 150 kJ of 0.35 µm (3ω) light and will consist of either a 4×4 or a 2×8 array of beamlets, with each beamlet aperture having dimensions of 29 cm × 29 cm. This produces a 3ω energy density at the final optic of 12 J/cm2 average and 225-30 J/cm2 peak.