ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
David G. Nilson, John G. Woodworth
Fusion Science and Technology | Volume 15 | Number 2 | March 1989 | Pages 578-582
The ICF Laboratory Microfusion Facilty | doi.org/10.13182/FST89-A39760
Articles are hosted by Taylor and Francis Online.
Thegeometrical layout for the 68 beams of the 10 megajoule laser shows the final optics placed at 25 meters from the target (see Fig. 1). The final optic will be a 2–5 cm thick debris shield ($40K each) which will be placed in front of a $200K focussing lens. Each of the 68 beams will deliver 150 kJ of 0.35 µm (3ω) light and will consist of either a 4×4 or a 2×8 array of beamlets, with each beamlet aperture having dimensions of 29 cm × 29 cm. This produces a 3ω energy density at the final optic of 12 J/cm2 average and 225-30 J/cm2 peak.