The application of the Automated Variance Reduction Generator (ADVANTG) code to accelerate MCNP neutron transport calculations in fusion-relevant geometries is presented. The ADVANTG code generates variance-reduction parameters using the Consistent Adjoint Driven Importance Sampling (CADIS) and Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) methods based on deterministic transport calculations performed by the discrete ordinates code Denovo. The aim of ADVANTG is to reduce the MCNP computational time by automating the process of variance-reduction parameter generation. ADVANTG was tested on a simplified model of a JET-like tokamak that in spite of its simplicity retains all the major characteristics of such a tokamak. The performance of the nuclear data libraries provided with ADVANTG and of various other ADVANTG/Denovo settings on variance-reduction efficiency was tested. Several cases using deuterium-deuterium or deuterium-tritium (D-T) volumetric (plasma) sources and 252Cf or D-T point neutron sources were analyzed to find guidelines for successful use of the code for fusion applications. Additionally, the use of ADVANTG as a tool to identify major neutron pathways from the neutron source to the detector is demonstrated.