ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
V. Tkachenko, A. V. Ovcharov, M. B. Rozenkevich
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 207-214
Technical Paper | doi.org/10.13182/FST16-130
Articles are hosted by Taylor and Francis Online.
Vapor phase catalytic exchange is an important part of many hydrogen isotope separation processes. Some industrial hydrogen isotope separation processes are performed in a wide deuterium concentration range. The performance of catalysts in hydrogen-water vapor exchange reaction in the upper deuterium concentration limit is poorly investigated. The paper presents results of an investigation of catalytic activity of three catalyst types at the upper and lower limits of the deuterium concentration range. All catalyst experimental rate constants in protium-deuterium exchange demonstrated a tendency to increase with the growth of deuterium concentration. Experimental rate constants of catalysts in protium-tritium and deuterium-tritium exchange were found to remain constant. In this work the authors propose a method to be used for catalyst performance evaluation to obtain catalyst performance data for liquid phase catalytic exchange process models.