ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
V. Tkachenko, A. V. Ovcharov, M. B. Rozenkevich
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 207-214
Technical Paper | doi.org/10.13182/FST16-130
Articles are hosted by Taylor and Francis Online.
Vapor phase catalytic exchange is an important part of many hydrogen isotope separation processes. Some industrial hydrogen isotope separation processes are performed in a wide deuterium concentration range. The performance of catalysts in hydrogen-water vapor exchange reaction in the upper deuterium concentration limit is poorly investigated. The paper presents results of an investigation of catalytic activity of three catalyst types at the upper and lower limits of the deuterium concentration range. All catalyst experimental rate constants in protium-deuterium exchange demonstrated a tendency to increase with the growth of deuterium concentration. Experimental rate constants of catalysts in protium-tritium and deuterium-tritium exchange were found to remain constant. In this work the authors propose a method to be used for catalyst performance evaluation to obtain catalyst performance data for liquid phase catalytic exchange process models.