ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
P. V. Subhash, Gunjan Indauliya, T. Sai Chaitanya, Priti Kanth, S. Jakhar, Sanjeev Varshney, Siddharth Kumar, Raja Krishna, Nirav Bhaliya, Sapna Mishra, P. Shrishail, Vinay Kumar
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 215-224
Technical Note | doi.org/10.13182/FST16-241
Articles are hosted by Taylor and Francis Online.
Activation and radioactive waste analysis has been carried out for an X-ray crystal survey spectrometer (XRCS) sight tube, which will be installed in equatorial port No. 11 assigned for the ITER diagnostics. The neutron transport calculations are performed using the Monte Carlo N-Particle code (MCNP). The base C-Lite neutronics ITER model is grossly modified to include all required details of the port plug, diagnostic apertures, and diagnostic system. The transport results provide neutron flux at desired positions. The sight tube is supposed to be placed in the interspace, after the closure plate, to channel X-rays to the spectrometer. Complete radioactive inventory calculations along with contact doses and nuclear activity levels are obtained for two different kinds of sight tube material. FISPACT-2007, an inventory code, is used for this purpose. The analysis for this particular sight tube can be used to obtain a material preference based on a radiation point of view. Further, the dependence of neutron spectrum and irradiation time on activity levels, contact dose rate, and production of dominant dose contributing radionuclides has been studied. Dominant radionuclides that contribute up to 95% of the total dose are identified, and their pathways are generated to back trace their sources as an effort to reduce the dose rate. The effect of reducing the cobalt content in SS316L(N)-IG on the contact dose rate is evaluated separately for the sight tube of the XRCS system. Many of the FISPACT calculations are repeated with ACTYS, a locally developed activation solver.