ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC seeks public comment on V.C. Summer SLR
The Nuclear Regulatory Commission is asking for public feedback on the environmental report for a subsequent license renewal (SLR) request from Dominion Energy, the owners of V.C. Summer nuclear power plant in South Carolina.
V. Krasilnikov, L. Bertalot, R. Barnsley, M. Walsh
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 196-200
Technical Paper | doi.org/10.13182/FST16-108
Articles are hosted by Taylor and Francis Online.
For a long time, nuclear fusion has been anticipated to become a future power source. The International Thermonuclear Experimental Reactor (ITER) tokamak is designed to demonstrate the feasibility of applying the deuterium-tritium fusion reaction to human power needs. The measurements of ITER�s fusion neutron flux parameters can provide information on total fusion power and fusion power density as well as other plasma parameters. This paper gives an overview of the technical constraints in terms of the radiological, thermal, and electromagnetic loads for ITER neutron detectors. These constraints have been studied and summarized with measurement requirements. The areas of high risk have been highlighted to encourage research and development of neutron detectors for the urgent needs of ITER.