ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
V. Krasilnikov, L. Bertalot, R. Barnsley, M. Walsh
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 196-200
Technical Paper | doi.org/10.13182/FST16-108
Articles are hosted by Taylor and Francis Online.
For a long time, nuclear fusion has been anticipated to become a future power source. The International Thermonuclear Experimental Reactor (ITER) tokamak is designed to demonstrate the feasibility of applying the deuterium-tritium fusion reaction to human power needs. The measurements of ITER�s fusion neutron flux parameters can provide information on total fusion power and fusion power density as well as other plasma parameters. This paper gives an overview of the technical constraints in terms of the radiological, thermal, and electromagnetic loads for ITER neutron detectors. These constraints have been studied and summarized with measurement requirements. The areas of high risk have been highlighted to encourage research and development of neutron detectors for the urgent needs of ITER.