ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Guang-Hong Lu, Long Cheng, Kameel Arshad, Yue Yuan, Jun Wang, Shaoyang Qin, Ying Zhang, Kaigui Zhu, Guang-Nan Luo, Haishan Zhou, Bo Li, Jiefeng Wu, Bo Wang
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 177-186
Technical Paper | doi.org/10.13182/FST16-115
Articles are hosted by Taylor and Francis Online.
The linear plasma device Simulator for Tokamak Edge Plasma (STEP) has been constructed at Beihang University, Beijing, to study plasma-material interactions (PMIs) for fusion reactor applications. The device can produce versatile low-energy and high flux plasma in laboratory experiments and is highly cost-effective to replicate the fusion-relevant plasma environment to study PMI processes. The attractive feature of the device is its compact design with a main body dimension of 1.5 × 1.5 × 0.8 m3 including the plasma source, vacuum chamber, magnetic coils, and diagnostics. A longitudinal magnetic field of up to 0.26 T is used to confine the plasma onto the target in an ~1-m-long vacuum tube. It can produce a steady-state plasma of low impinging ion energy of <100 eV, ion flux up to 1022 m−2 · s−1, and fluence of >1026 m−2 per exposure. Various plasma species such as hydrogen, deuterium, helium, and nitrogen can be produced to manipulate PMI processes for different target grades. The STEP device provides an experimental platform to improve the understanding of PMIs, validate computational simulation results, and build a database of fusion material performance and lifetime.