ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Guang-Hong Lu, Long Cheng, Kameel Arshad, Yue Yuan, Jun Wang, Shaoyang Qin, Ying Zhang, Kaigui Zhu, Guang-Nan Luo, Haishan Zhou, Bo Li, Jiefeng Wu, Bo Wang
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 177-186
Technical Paper | doi.org/10.13182/FST16-115
Articles are hosted by Taylor and Francis Online.
The linear plasma device Simulator for Tokamak Edge Plasma (STEP) has been constructed at Beihang University, Beijing, to study plasma-material interactions (PMIs) for fusion reactor applications. The device can produce versatile low-energy and high flux plasma in laboratory experiments and is highly cost-effective to replicate the fusion-relevant plasma environment to study PMI processes. The attractive feature of the device is its compact design with a main body dimension of 1.5 × 1.5 × 0.8 m3 including the plasma source, vacuum chamber, magnetic coils, and diagnostics. A longitudinal magnetic field of up to 0.26 T is used to confine the plasma onto the target in an ~1-m-long vacuum tube. It can produce a steady-state plasma of low impinging ion energy of <100 eV, ion flux up to 1022 m−2 · s−1, and fluence of >1026 m−2 per exposure. Various plasma species such as hydrogen, deuterium, helium, and nitrogen can be produced to manipulate PMI processes for different target grades. The STEP device provides an experimental platform to improve the understanding of PMIs, validate computational simulation results, and build a database of fusion material performance and lifetime.