ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Jinglin Huang, Yansong Liu, Kai Du, Zhibing He, Yongjian Tang
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 187-195
Technical Paper | doi.org/10.13182/FST15-237
Articles are hosted by Taylor and Francis Online.
High-Z (Z is an atomic number) metals are often deposited on hollow glass or polymer microspheres to improve the implosion efficiency of targets in inertial confinement fusion experiments. Smooth and crack-free thick tungsten coatings on glow discharge polymer shells have been deposited via copper doping by direct-current magnetron sputtering. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and a white light interferometer were used to characterize the microstructure, composition, phase evolution, and surface roughness of tungsten coatings. The copper atoms with appropriate amounts were found to form a supersaturated solid solution with tungsten, which can serve to refine the grains of these coatings and to smooth their surface. Copper atoms in tungsten coatings were also found to stabilize the metastable β-phase W. This β-phase W is believed to play a key role in the evolution of the size and morphology of the grains of tungsten coatings. This may become a probable method to fabricate high-Z coated targets via doping.