Tungsten and its alloys are the primary candidate materials for plasma-facing components in fusion reactors. The material is exposed to high-energy neutrons and the high flux of helium and hydrogen atoms. In this work we have studied the properties of vacancy clusters and their interaction with H and He in W using density functional theory. Convergence of calculations with respect to modeling cell size was investigated. It is demonstrated that vacancy cluster formation energy converges with small cells with a size of 6 × 6 × 6 (432 lattice sites) enough to consider a microvoid of up to six vacancies with high accuracy. Most of the vacancy clusters containing fewer than six vacancies are unstable. Introducing He or H atoms increases their binding energy potentially making gas-filled bubbles stable. According to the results of the calculations, the H2 molecule is unstable in clusters containing six or fewer vacancies.