ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Zhangcan Yang, Sophie Blondel, Karl D. Hammond, Brian D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 60-74
Technical Paper | doi.org/10.13182/FST16-111
Articles are hosted by Taylor and Francis Online.
The object kinetic Monte Carlo code Kinetic Simulations Of Microstructure Evolution (KSOME) was used to study the subsurface helium clustering behavior in tungsten as a function of temperature, helium implantation rate, and vacancy concentration. The simulations evaluated helium implantation fluxes from 1022 to 1026 m−2 · s−1 at temperatures from 473 to 1473 K for 100-eV helium ions implanted below tungsten surfaces and for vacancy concentrations between 1 and 50 parts per million. Such vacancy concentrations far exceed thermodynamic equilibrium values but are consistent with supersaturated concentrations expected during concurrent, or preexisting, neutron irradiation. The thermodynamics and kinetic parameters to describe helium diffusion and clustering are input to KSOME based on values obtained from atomistic simulation results. These kinetic Monte Carlo results clearly delineate two different regimes of helium cluster nucleation, one dominated by helium self-trapping at high implantation rates and lower temperatures and one where helium–vacancy trapping dominates the helium cluster nucleation at lower implantation rates and higher temperatures. The transition between these regimes has been mapped as a function of implantation rate, temperature, and vacancy concentration and can provide guidance to understand the conditions under which neutron irradiation effects may contribute to subsurface gas nucleation in tungsten plasma-facing components.