ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
S. Keniley, D. Curreli
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 93-102
Technical Paper | doi.org/10.13182/FST16-117
Articles are hosted by Taylor and Francis Online.
We present an innovative coupled Boltzmann–binary collision approximation (BCA) method for the simulation of the near-wall plasma in the presence of a material-releasing wall. The method is based on a full-f multispecies Boltzmann solver for the plasma (charged and neutral species) coupled to a modification of the classical BCA code TRIDYN. Both the plasma ions and the impurities are treated as Boltzmann kinetic species, allowing high resolution even at very disparate densities, particle fluxes, drift velocities, and energy fluxes. From the distribution functions, all the fluid moments (density, heat flux, etc.) and the net and gross erosion rates are derived. An example of calculation of a helium plasma facing a beryllium wall is reported, showing the evolution of the phase-spaces of ions, neutrals, and material impurities in the near-wall region at nominal ITER conditions.