ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
E. T. Cheng
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 549-553
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-A395
Articles are hosted by Taylor and Francis Online.
A fusion based actinide destruction system is advantageous because of higher actinide destruction efficiency and higher energy efficiency when compared to other destruction technologies. The unique neutron multiplication capability due to the n,2n reactions in blanket materials with 14 MeV D-T neutrons enhances further the performance efficiency.Investigation of a high performance fusion based actinide destruction system was conducted. A self-cooled, actinide-carrying molten salt blanket can be designed to operate at a high sub-criticality factor of 0.95-0.96, with less than 0.4 wt% actinide concentration dissolved in the molten salt. The corresponding blanket energy multiplication is 160. Lithium-6, which is required for tritium breeding, can be used as a variable to shape the neutron spectrum and control the criticality factor, and thus to maintain a constant fission thermal power output from the actinide destruction plant.Sub-criticality can be maintained in all cases of the actinide destruction plant, during normal operation and abnormal conditions.A fusion device projected from a tokamak experiment can produce 30 MW fusion power, with a plasma amplification factor of 2. It is considered adequate to drive the sub-critical molten salt blanket. The total thermal fission power is about 4000 MW, which is able to destroy 1.6 metric tons of actinides annually when operating at full power.