ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Takanori Higashi, Takahito Tomizawa, Mitsugu Daino, Yasushi Yamamoto
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 544-548
Technical Paper | Fusion Energy - Nonelectric Applications | doi.org/10.13182/FST03-A394
Articles are hosted by Taylor and Francis Online.
The effects of operating gas pressure on a Cylindrical Inertial Electrostatic Confinement Fusion (IECF) device are investigated. First we did glow discharge experiments, and we obtained 1.8 × 106 neutrons production per second with 45-kV, 44-mA discharge at 1.2 Pa. Next we modified the device and tried to reduce the operating gas pressure with an ion source, aimed to increase neutron production. Although the discharge currents are small, we can make steady discharges at less than 0.1 Pa. The neutron production rates per current are larger than those of glow discharge at higher pressure. We consider it should suggest the validity of reducing operating pressure in IECF devices.