ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Gen Chen, Yanping Zhao, Yuzhou Mao, Yuan Shuai, Xinjun Zhang, Chengming Qing
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 144-149
Technical Paper | doi.org/10.13182/FST15-228
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance frequency (ICRF) heating is one of the traditional auxiliary heating methods adopted in the Experimental Advanced Superconducting Tokamak (EAST). The radio-frequency (rf) source consisting of eight transmitters has been fabricated since 2012 and has a working frequency of 24 to 70 MHz. It has a maximum total power of ~12 MW. However, the power injection into plasma has been restricted by the variable antenna load, which is sensitive to the scrape-off-layer boundary condition and the gradient distribution of plasma density. Triple liquid stub tuners, which have been employed for ICRF impedance matching, cannot cope with such rapid variations because of the low response speed. In previous research, a 300-kW ferrite tuner (FT) was developed and tested, but it was not good enough to meet the requirements of real-time impedance matching. Research on a high-power fast-response FT with maximum power of 1.5 MW was carried out to achieve real-time tuning to trace the load variations of the antenna. The design parameters of the FT were determined according to the experimental data of the antenna load in EAST. The ferrite material, rf circuit, and magnet system of the FT were discussed to satisfy the design goals. The test results showed good performance of response time, differential phase shift, and insertion loss, which was extremely significant for the high-power, real-time operation of an impedance matching network based on FTs.