ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Gen Chen, Yanping Zhao, Yuzhou Mao, Yuan Shuai, Xinjun Zhang, Chengming Qing
Fusion Science and Technology | Volume 71 | Number 2 | February 2017 | Pages 144-149
Technical Paper | doi.org/10.13182/FST15-228
Articles are hosted by Taylor and Francis Online.
Ion cyclotron resonance frequency (ICRF) heating is one of the traditional auxiliary heating methods adopted in the Experimental Advanced Superconducting Tokamak (EAST). The radio-frequency (rf) source consisting of eight transmitters has been fabricated since 2012 and has a working frequency of 24 to 70 MHz. It has a maximum total power of ~12 MW. However, the power injection into plasma has been restricted by the variable antenna load, which is sensitive to the scrape-off-layer boundary condition and the gradient distribution of plasma density. Triple liquid stub tuners, which have been employed for ICRF impedance matching, cannot cope with such rapid variations because of the low response speed. In previous research, a 300-kW ferrite tuner (FT) was developed and tested, but it was not good enough to meet the requirements of real-time impedance matching. Research on a high-power fast-response FT with maximum power of 1.5 MW was carried out to achieve real-time tuning to trace the load variations of the antenna. The design parameters of the FT were determined according to the experimental data of the antenna load in EAST. The ferrite material, rf circuit, and magnet system of the FT were discussed to satisfy the design goals. The test results showed good performance of response time, differential phase shift, and insertion loss, which was extremely significant for the high-power, real-time operation of an impedance matching network based on FTs.