ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Sophie Blondel, David E. Bernholdt, Karl D. Hammond, Lin Hu, Dimitrios Maroudas, Brian D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 84-92
Technical Paper | doi.org/10.13182/FST16-109
Articles are hosted by Taylor and Francis Online.
We present a hierarchical multiscale modeling study of implanted helium (He) segregation near grain boundaries (GBs) of tungsten. We extend our spatially dependent cluster dynamics model to two spatial dimensions in order to take into account the biased drift of mobile He clusters toward the GBs observed in atomic-scale simulations. We are able to reproduce the results from large-scale molecular dynamics simulations near and away from the GBs at low fluence with the extended cluster dynamics model. We suggest and verify that the sink (surface and GB) strengths are attenuated by the increasing concentration of He clusters at high fluence. This cluster dynamics model continues to set the stage for development of fully atomistically informed, coarse-grained models for computationally efficient predictions of He retention and surface morphological evolution, advancing progress toward the goal of efficient and optimal design of plasma-facing components.