ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
Sophie Blondel, David E. Bernholdt, Karl D. Hammond, Lin Hu, Dimitrios Maroudas, Brian D. Wirth
Fusion Science and Technology | Volume 71 | Number 1 | January 2017 | Pages 84-92
Technical Paper | doi.org/10.13182/FST16-109
Articles are hosted by Taylor and Francis Online.
We present a hierarchical multiscale modeling study of implanted helium (He) segregation near grain boundaries (GBs) of tungsten. We extend our spatially dependent cluster dynamics model to two spatial dimensions in order to take into account the biased drift of mobile He clusters toward the GBs observed in atomic-scale simulations. We are able to reproduce the results from large-scale molecular dynamics simulations near and away from the GBs at low fluence with the extended cluster dynamics model. We suggest and verify that the sink (surface and GB) strengths are attenuated by the increasing concentration of He clusters at high fluence. This cluster dynamics model continues to set the stage for development of fully atomistically informed, coarse-grained models for computationally efficient predictions of He retention and surface morphological evolution, advancing progress toward the goal of efficient and optimal design of plasma-facing components.