ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
I. Geoffray, J. Andre, R. Bourdenet, J. Schunck, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 244-253
Technical Paper | doi.org/10.13182/FST15-221
Articles are hosted by Taylor and Francis Online.
Hydrodynamics growth experiments involve rippled ablator samples (CHx, Ge:CH, or Si:CH). The rippled surface features a microscale mathematical shape (sinusoidal functions are widely used). Nevertheless, experiments have progressed with time, and samples evolved gradually from two-dimensional (planar samples) to three-dimensional geometries (capsules).
This paper presents various processes that have been developed to fulfill such specifications. Various technologies, based on laser means (excimer laser, Ti:sapphire laser) or mechanical ultraprecision means, have been successfully applied to ripples machining (planar samples or capsules).
The main results are discussed showing the ability and accuracy of each technology as well as their main limitations. We focus especially on our latest results (i.e., rippled or grooved capsules).