ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
F. Durut, R. Botrel, E. Brun, S. Le Tacon, C. Chicanne, O. Vincent-Viry, M. Theobald, V. Vignal
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 341-350
Technical Paper | doi.org/10.13182/FST15-230
Articles are hosted by Taylor and Francis Online.
Pure gold-copper alloys are known to be difficult to electrodeposit because of a strong variation in composition after a few microns have been deposited. Commissariat à l’Energie Atomique (CEA) studied the phenomenon and showed that the decrease in gold’s content is accompanied by an evolution of the microstructure that could be attributed to the free cyanide released near the cathode. During electrolysis, free cyanides provoke a decrease of the copper overpotential (until copper reduction is stopped) and promote the formation of Cu(CN)43− that conduct to an instantaneous three-dimensional nucleation of copper. This phenomenological model well explains why the growth mechanism changes and why only gold is deposited for thick deposits. On the basis of this model, CEA has developed a specific process using ultrasonic waves in order to remove the free cyanides from the cathode. This process allows CEA to perform thick gold-copper deposits with a constant concentration in copper through all the thickness. By controlling the applied potential, different thick alloys with a concentration of copper between 0 wt% up to 40 wt% can be deposited.