ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
T. P. Bernat, N. Petta, B. Kozioziemski, S. J. Shin, D. R. Harding
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 196-205
Technical Paper | doi.org/10.13182/FST15-223
Articles are hosted by Taylor and Francis Online.
Calorimetric measurements at University of Rochester Laboratory for Laser Energetics of D2 crystallization from the melt indicate that zinc can act as a heterogeneous nucleation seed with suppressed supercooling. We further studied this effect for a variety of zinc substrates using the optical-access cryogenic sample cell at Lawrence Livermore National Laboratory. Small supercoolings are observed, some as low as 5 mK, but results depend on the zinc history and sample preparation. In general, thin samples prepared by physical vapor deposition were not effective in nucleating crystal formation. Larger (several-millimeter) granules showed greater supercooling suppression, depending on surface modification and granule size. Surfaces of these granules are morphologically varied and not uniform. Scanning electron microscope images were not able to correlate any particular surface feature with enhanced nucleation. Application of classical nucleation theory to the observed variation of supercooling level with granule size is consistent with nucleation features with sizes <100 nm and with wetting angles of a few degrees.