ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
L. J. Jiang, J. H. Campbell, Y. F. Lu, T. Bernat, N. Petta
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 295-309
Technical Paper | doi.org/10.13182/FST15-222
Articles are hosted by Taylor and Francis Online.
Two-photon polymerization (2PP) offers an attractive option for direct writing micron- to millimeter-sized laser target components that support high-energy-density plasma physics research. 2PP was used to deterministically print a number of common targetlike structures including tubes, spatially periodic Rayleigh-Taylor–like surfaces, and low-density foams. The structures were printed using commercially available acrylic photoresins. The elemental compositions are reported for comparison with other polymers used for making target components. A number of foamlike structures ranging in size from tens to hundreds of microns and varying in density from 600 to 60 mg/cm3 were readily printed in times ranging from several seconds to a few hours depending on the size. In addition, direct printing was demonstrated to fabricate graded-density foam comprising 12 individual layers with a vertical density gradient of 600 to 80 mg/cm3. Control of shrinkage and deformation during development and subsequent drying remains a challenge for certain structures and a focus of ongoing research.