ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The Meta-Vistra deal: A closer look
With last Friday's announcement regarding its vision for nuclear energy, Meta has entered into 20-year power purchase agreements (PPAs) for more than 2,600 MW of electricity from a combination of three Vistra-owned nuclear plants to support the tech behemoth's planned operations in the PJM region.
J. D. Sater, F. Espinosa-Loza, B. Kozioziemski, E. R. Mapoles, R. Dylla-Spears, J. W. Pipes, C. F. Walters
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 191-195
Technical Paper | doi.org/10.13182/FST15-204
Articles are hosted by Taylor and Francis Online.
Capsule implosion experiments on the National Ignition Facility (NIF) are driven with a carefully tailored laser pulse that delivers a sequence of shocks to the ablator and fuel. To ensure the shocks converge at the desired position, the shock strength and velocity are measured in experimental platforms referred to as keyhole targets. Shock measurements have been made on capsules completely filled with liquid deuterium for the solid deuterium tritide (D-T) layer campaigns. Modeling has been used to extend these results to form an estimate of the shock properties in solid D-T layers.
To verify and improve the surrogacy of the liquid-filled keyhole measurements, we have developed a technique to form a solid layer inside the keyhole capsule. The layer is typically uniform over a 400-μm-diameter area. This is sufficient to allow direct measurement of the shock velocity. This layering technique has been successfully applied to 13 experiments on the NIF. The technique may also be applicable to fast-igniter experiments since some proposed designs resemble keyhole targets. We discuss our method in detail and give representative results.