ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
S. W. Haan, D. S. Clark, S. H. Baxamusa, J. Biener, L. Berzak Hopkins, T. Bunn, D. A. Callahan, L. Carlson, T. R. Dittrich, M. J. Edwards, B. A. Hammel, A. Hamza, D. E. Hinkel, D. D. Ho, D. Hoover, W. Hsing, H. Huang, O. A. Hurricane, M. A. Johnson, O. S. Jones, A. L. Kritcher, O. L. Landen, J. D. Lindl, M. M. Marinak, A. J. MacKinnon, N. B. Meezan, J. Milovich, A. Nikroo, J. L. Peterson, P. Patel, H. F. Robey, J. D. Salmonson, V. A. Smalyuk, B. K. Spears, M. Stadermann, S. V. Weber, J. L. Kline, D. C. Wilson, A. N. Simakov, A. Yi
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 121-126
Technical Paper | doi.org/10.13182/FST15-244
Articles are hosted by Taylor and Francis Online.
Experiments and analysis in the 3 years since the 2012 Target Fabrication Meeting have resulted in significant improvement in understanding of the requirements for high-performance layered implosions. Three issues have been identified that significantly degrade the performance of the implosions as they were originally configured for National Ignition Facility experiments: capsule support system, time-dependent radiation asymmetry, and transverse oxygen nonuniformity in the glow discharge polymer (GDP) ablator. Analyses suggest that the shortfalls in these three areas can explain the degraded performance of the National Ignition Campaign implosions. We present the status of work toward curing these three problems in the standard GDP ablator/gold hohlraum configuration as they affect target fabrication priorities. We also summarize the prospects for alternate ablators that might reduce these degradation mechanisms.