ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The Meta-Vistra deal: A closer look
With last Friday's announcement regarding its vision for nuclear energy, Meta has entered into 20-year power purchase agreements (PPAs) for more than 2,600 MW of electricity from a combination of three Vistra-owned nuclear plants to support the tech behemoth's planned operations in the PJM region.
S. W. Haan, D. S. Clark, S. H. Baxamusa, J. Biener, L. Berzak Hopkins, T. Bunn, D. A. Callahan, L. Carlson, T. R. Dittrich, M. J. Edwards, B. A. Hammel, A. Hamza, D. E. Hinkel, D. D. Ho, D. Hoover, W. Hsing, H. Huang, O. A. Hurricane, M. A. Johnson, O. S. Jones, A. L. Kritcher, O. L. Landen, J. D. Lindl, M. M. Marinak, A. J. MacKinnon, N. B. Meezan, J. Milovich, A. Nikroo, J. L. Peterson, P. Patel, H. F. Robey, J. D. Salmonson, V. A. Smalyuk, B. K. Spears, M. Stadermann, S. V. Weber, J. L. Kline, D. C. Wilson, A. N. Simakov, A. Yi
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 121-126
Technical Paper | doi.org/10.13182/FST15-244
Articles are hosted by Taylor and Francis Online.
Experiments and analysis in the 3 years since the 2012 Target Fabrication Meeting have resulted in significant improvement in understanding of the requirements for high-performance layered implosions. Three issues have been identified that significantly degrade the performance of the implosions as they were originally configured for National Ignition Facility experiments: capsule support system, time-dependent radiation asymmetry, and transverse oxygen nonuniformity in the glow discharge polymer (GDP) ablator. Analyses suggest that the shortfalls in these three areas can explain the degraded performance of the National Ignition Campaign implosions. We present the status of work toward curing these three problems in the standard GDP ablator/gold hohlraum configuration as they affect target fabrication priorities. We also summarize the prospects for alternate ablators that might reduce these degradation mechanisms.