ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
D. Capelli, D. W. Schmidt, T. Cardenas, G. Rivera, R. B. Randolph, F. Fierro, E. C. Merritt, K. A. Flippo, F. W. Doss, J. L. Kline
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 316-323
Technical Paper | doi.org/10.13182/FST15-229
Articles are hosted by Taylor and Francis Online.
The shear experiments are designed to investigate the transition to turbulence of the Kelvin-Helmholtz instability driven by counter-propagating shear flows. The shear targets for the National Ignition Facility (NIF) shear experiments consist of two hohlraums connected to both ends of a shock tube. The cylindrical shock tube is filled with two hemi-cylindrical CH foams separated by a metal tracer foil. On both ends, a thick gold half-moon–shaped D-plug is placed on opposite halves of the tube to create counter-propagating shock waves. The design is based on a smaller Omega shear target. While the basic NIF design has remained the same, details of the design have undergone several changes over the last 2 years and continue to evolve to improve the quality of the experimental results. Design changes include shock tube designs, tracer foil variations, transitioning to beryllium spool machining, and groove features inside of the tube. Details of how the targets are built including design, machining the parts, target assembly, and metrology are presented, as well as recent target developmental work to meet the needs of future experiments and to improve target assembly efficiency and accuracy.