ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. Capelli, D. W. Schmidt, T. Cardenas, G. Rivera, R. B. Randolph, F. Fierro, E. C. Merritt, K. A. Flippo, F. W. Doss, J. L. Kline
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 316-323
Technical Paper | doi.org/10.13182/FST15-229
Articles are hosted by Taylor and Francis Online.
The shear experiments are designed to investigate the transition to turbulence of the Kelvin-Helmholtz instability driven by counter-propagating shear flows. The shear targets for the National Ignition Facility (NIF) shear experiments consist of two hohlraums connected to both ends of a shock tube. The cylindrical shock tube is filled with two hemi-cylindrical CH foams separated by a metal tracer foil. On both ends, a thick gold half-moon–shaped D-plug is placed on opposite halves of the tube to create counter-propagating shock waves. The design is based on a smaller Omega shear target. While the basic NIF design has remained the same, details of the design have undergone several changes over the last 2 years and continue to evolve to improve the quality of the experimental results. Design changes include shock tube designs, tracer foil variations, transitioning to beryllium spool machining, and groove features inside of the tube. Details of how the targets are built including design, machining the parts, target assembly, and metrology are presented, as well as recent target developmental work to meet the needs of future experiments and to improve target assembly efficiency and accuracy.