ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
Argonne assists advanced reactor development with award-winning safety software
The development of modern nuclear reactor technologies relies heavily on complex software codes and computer simulations to support the design, construction, and testing of physical hardware systems. These tools allow for rigorous testing of theory and thorough verification of design under various use or transient power scenarios.
E. M. Giraldez, M. L. Hoppe Jr., D. E. Hoover, A. Q. L. Nguyen, N. G. Rice, A. M. Garcia, H. Huang, M. P. Mauldin, M. P. Farrell, A. Nikroo, V. Smalyuk
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 258-264
Technical Paper | doi.org/10.13182/FST15-234
Articles are hosted by Taylor and Francis Online.
Hydrodynamic instability growth and its effects on capsule implosion performance are being studied at the National Ignition Facility (NIF). Experimental results have shown that low-mode instabilities are the primary culprit for yield degradation. Ignition-type capsules with machined two-dimensional (2-D) sinusoidal defects were used to measure low-mode hydrodynamic instability growth in the acceleration phase of the capsule implosion. The capsules were imploded using ignition-relevant laser pulses and the ablation-front modulation growth was measured using X-ray radiography. The experimentally measured growth was in good agreement with simulations.
Fabrication of the preimposed 2-D sinusoidal defects of different wavelengths and amplitudes on the surfaces of ignition-type capsules was accomplished by General Atomics leading up to and during the Hydro-Growth Radiography campaign for the hydrodynamic instability growth experiments conducted at NIF between 2013 and 2014. The 2-D sinusoidal defects were imposed on ignition-type capsules by machining the surface of the capsule. The fabrication trials showed that there are six parameters that can affect the ripple form, wall thickness, and the extent of the pattern about the equator of the capsule: (1) knowing accurately the outer diameter of the capsule, (2) the roundness of the capsule (modal content), (3) the cutting tool alignment with respect to the surface of the capsule, (4) the radius and form of the cutting tool, (5) tool touch-off, and (6) the runout of the capsule center with respect to the axis of rotation of the lathe’s spindle. In this paper, we will describe the importance of these parameters on the machining of uniform 2-D sinusoidal defects.